Ang dating daan live broadcast dating strategies for alpha female

6854933580_2c8b688306_z

Computational Linguistics in the Netherlands Journal 4 (2014) Submitted 06/2014; Published 12/2014 Gender Recognition on Dutch Tweets Hans van Halteren Nander Speerstra Radboud University Nijmegen, CLS, Linguistics Abstract In this paper, we investigate gender recognition on Dutch Twitter material, using a corpus consisting of the full Tweet production (as far as present in the Twi NL data set) of 600 users (known to be human individuals) over 2011 and We experimented with several authorship profiling techniques and various recognition features, using Tweet text only, in order to determine how well they could distinguish between male and female authors of Tweets.We achieved the best results, 95.5% correct assignment in a 5-fold cross-validation on our corpus, with Support Vector Regression on all token unigrams.Gender recognition has also already been applied to Tweets. (2010) examined various traits of authors from India tweeting in English, combining character N-grams and sociolinguistic features like manner of laughing, honorifics, and smiley use.With lexical N-grams, they reached an accuracy of 67.7%, which the combination with the sociolinguistic features increased to 72.33%. (2011) attempted to recognize gender in tweets from a whole set of languages, using word and character N-grams as features for machine learning with Support Vector Machines (SVM), Naive Bayes and Balanced Winnow2.For all techniques and features, we ran the same 5-fold cross-validation experiments in order to determine how well they could be used to distinguish between male and female authors of tweets.In the following sections, we first present some previous work on gender recognition (Section 2). Currently the field is getting an impulse for further development now that vast data sets of user generated data is becoming available. (2012) show that authorship recognition is also possible (to some degree) if the number of candidate authors is as high as 100,000 (as compared to the usually less than ten in traditional studies).Later, in 2004, the group collected a Blog Authorship Corpus (BAC; (Schler et al.2006)), containing about 700,000 posts to (in total about 140 million words) by almost 20,000 bloggers. Slightly more information seems to be coming from content (75.1% accuracy) than from style (72.0% accuracy). We see the women focusing on personal matters, leading to important content words like love and boyfriend, and important style words like I and other personal pronouns.

ang dating daan live broadcast-73ang dating daan live broadcast-9ang dating daan live broadcast-61ang dating daan live broadcast-82

The authors do not report the set of slang words, but the non-dictionary words appear to be more related to style than to content, showing that purely linguistic behaviour can contribute information for gender recognition as well.The age component of the system is described in (Nguyen et al. The authors apply logistic and linear regression on counts of token unigrams occurring at least 10 times in their corpus.The paper does not describe the gender component, but the first author has informed us that the accuracy of the gender recognition on the basis of 200 tweets is about 87% (Nguyen, personal communication). (2014) did a crowdsourcing experiment, in which they asked human participants to guess the gender and age on the basis of 20 to 40 tweets. on this, we will still take the biological gender as the gold standard in this paper, as our eventual goal is creating metadata for the Twi NL collection. Experimental Data and Evaluation In this section, we first describe the corpus that we used in our experiments (Section 3.1).For our experiment, we selected 600 authors for whom we were able to determine with a high degree of certainty a) that they were human individuals and b) what gender they were.We then experimented with several author profiling techniques, namely Support Vector Regression (as provided by LIBSVM; (Chang and Lin 2011)), Linguistic Profiling (LP; (van Halteren 2004)), and Ti MBL (Daelemans et al.For gender, the system checks the profile for about 150 common male and 150 common female first names, as well as for gender related words, such as father, mother, wife and husband.

You must have an account to comment. Please register or login here!